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In pursuit of this goal, atomic-scale com-
puter simulations have long been a cen-
tral approach, and two major families of 
methods are routinely used today. On the 
one hand, there are quantum-mechanical 
simulations, in which we solve Schröding-
er's equation for the electronic structure 
of molecular and periodic systems, most 
widely based on density-functional theory 
(DFT).[6–8] These methods provide (largely) 
reliable results for structural models of 
materials that normally contain a few tens 
or hundreds of atoms. State-of-the-art DFT 
methods can be applied to many material 
classes, and they are increasingly used 
for high-throughput screening and “in 
silico” (computer-based) design of mate-
rials: new compositions and previously 

unknown structures have been identified in DFT searches and 
subsequently experimentally realized.[5,9–11] On the other hand, 
interatomic potential models (“force fields”), parameterizing 
interactions between atoms with (relatively) simple functional 
forms, are widely used in materials science to describe matter in 
molecular dynamics (MD) simulations. These simulations grant 
access to larger time and length scales, reaching system sizes 
of up to hundreds of thousands of atoms.[12] In parameterizing 
these potentials, a certain physical form of the atomic inter-
actions is assumed, often in terms of bond distances, angles, 
and so on, and physical properties such as equilibrium lattice 
parameters or elastic constants enter the fitting of the potential. 
For this reason, such potentials are often called “empirical.” 
They are several orders of magnitude faster than DFT, but nec-
essarily less accurate and less easily transferable.

In this Progress Report, we highlight recent developments 
in “machine-learned” interatomic potentials, which represent a 
rapidly growing field that promises to do away with the afore-
mentioned trade-offs. Over the last year, there has been a surge 
of interest in machine learning (ML) methodology: part of it 
is due to the dramatic growth of ML throughout the scientific 
disciplines, and part of it is due to tangible success stories of  
ML-based interatomic potentials that are now beginning to 
emerge. We will argue that this is an exciting development with 
very practical implications, currently on the verge of moving 
from a somewhat specialized new technology to everyday appli-
cability, poised to enhance and complement the communities’ 
existing strengths in computational materials modeling. We 
will show selected applications of ML potentials to problems in 
materials science, discuss the current limitations (and possible 
pitfalls), and outline what we expect to be interesting directions 
for the development of the field in the coming years.

Atomic-scale modeling and understanding of materials have made remark-
able progress, but they are still fundamentally limited by the large computa-
tional cost of explicit electronic-structure methods such as density-functional 
theory. This Progress Report shows how machine learning (ML) is currently 
enabling a new degree of realism in materials modeling: by “learning” electro
nic-structure data, ML-based interatomic potentials give access to atomistic 
simulations that reach similar accuracy levels but are orders of magnitude 
faster. A brief introduction to the new tools is given, and then, applications 
to some select problems in materials science are highlighted: phase-change 
materials for memory devices; nanoparticle catalysts; and carbon-based elec-
trodes for chemical sensing, supercapacitors, and batteries. It is hoped that 
the present work will inspire the development and wider use of ML-based 
interatomic potentials in diverse areas of materials research.

Materials Modeling

1. Introduction

Materials science is an interdisciplinary research field span-
ning many different length scales. The most fundamental 
one is that of individual atoms, and of the 3D structures that 
they form, driven by physical laws and chemical bonding. 
For example, the intercalation of Li and Na ions in electrode 
materials constitutes the atomistic mechanism for energy 
storage in next-generation batteries, and it is governed by a 
delicate interplay of physical forces[1] and the often highly 
complicated local structures involved.[2] Accurately describing, 
understanding, and ultimately controlling the atomic-scale 
structure of matter is therefore a central goal of materials 
science.[3–5]
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2. Essentials of Machine Learning Potentials

Machine learning is the science and craft of extracting informa-
tion from large datasets, forming a subset of the broader field 
of “artificial intelligence.” ML methods are currently making a 
tremendous impact in different areas of physics, chemistry, and 
materials science,[13–19] with research questions ranging from the 
accurate prediction of molecular energies[20–22] and exploration 
of molecular reaction mechanisms[23,24] to the high-throughput 
screening of functional materials by way of optimizing a 
target property (say, the electronic band gap for a solar-cell 
light absorber, or the elastic properties for a superhard material) 
as a function of structural and other descriptors.[25–27] In what fol-
lows, we will strictly focus on one of the many emerging applica-
tions of ML in materials science: namely, on the generation and 
application of ML-based interatomic potentials for condensed-
matter systems, which help to understand the structures, reac-
tivities, and physical properties of materials on the atomic scale.

ML potentials are a mathematical representation of the 
3N-dimensional potential-energy surface (PES), that is, of the 
total energy and interatomic forces for a given set of N atomic 
positions. The concept resembles that of empirically fitted force 
fields, and ML potentials likewise make physically motivated 
assumptions, such as locality and smoothness of the PES. The 
crucial difference, however, is that ML models do not make any 
prior assumptions about the shape of the interatomic potential, 
that is, the specific functional form of the PES as a function of 
the atomic positions. Instead, any and all such information is 
extracted directly from a large set of input data, computed at an 
accurate and computationally much more expensive reference 
level (commonly, DFT). Once the potential has been fitted, it 
can be used to predict energies and forces for larger ensem-
bles of atoms, without the need for additional reference data. 
It thereby gives the user access, e.g., to MD simulations that 
are orders of magnitude faster than with the reference method, 
bringing more complex structural problems within compu-
tational reach. In fact, access is gained to any property that is 
derived from the PES: for example, by computing interatomic 
force constants and vibrational (phonon) modes, one can pre-
dict thermal transport properties.[28] However, the ML poten-
tials discussed herein do not provide an explicit description of 
the electronic structure, and therefore they give no electronic 
information, such as bandgaps or densities of states (DOS).

Three ingredients are needed to generate an ML potential for 
a given material (Figure  1): a database of reference structures 
and associated quantum-mechanical data (to which the poten-
tial will be fitted); a mathematical way to represent the atomic 
structure such that it can be fed into the ML algorithm; and 
finally, the regression or “learning” task itself. We will discuss 
these three ingredients in sequence.

2.1. Ingredient 1: Reference Databases

The starting point for an ML potential is a set of reference con-
figurations for which accurate energies and forces on atoms 
can be computed, typically using DFT. These reference data 
are collected for a representative set of atomic environments 
(“representative” in the sense that the potential is expected to 

encounter similar environments at runtime), shown as points in 
the stylized PES in Figure 1a, and stored in a suitable database 
format. The quality of these datapoints, and the effort and cost 
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of acquiring them by quantum-mechanical computations are 
important aspects in the generation of any ML potential.

We emphasize that this database must contain higher-
up regions of the PES, not only the local minima (e.g., 
experimentally known crystal structures). One example is to 
take structural snapshots from the liquid phase of a material, 
as sketched in Figure  1a. The aim in generating fitting data-
bases is to achieve sufficient sampling with a finite number of 
structures, and one assumes that the smoothness of the PES 
will make it possible to interpolate between them—an assump-
tion that is validated by experience. For example, an ML poten-
tial fitted only to a database of liquid and amorphous carbon 
configurations (hence containing no prior knowledge of crystal 
structures, but of course some local resemblance of “tetrahe-
dral” carbon) was shown to be suitable for crystal-structure 
searching in the spirit of the Ab Initio Random Structure 

Searching (AIRSS)[33] technique, identifying a large number of 
known and new hypothetical carbon allotropes.[34]

Initially, reference databases for ML potentials have been con-
structed manually, which is still widely done today. As a starting 
point, one will extract the relevant crystal structures from 
data sources such as the Inorganic Crystal Structure Database 
(ICSD).[35] Rather than fully optimized cells, one will add struc-
tures in which the atoms are slightly distorted (which induces 
forces on atoms, and these forces provide valuable atomically 
resolved information about the PES). Furthermore, structural 
models for point defects, surfaces, etc. are constructed, as one 
would do in DFT-based modeling,[36] and again a sufficient 
number of these configurations must be added to the reference 
database. Of course, the point is not just to reproduce what would 
be possible with DFT anyhow, but to exploit the “near-sightedness” 
of atomic and electronic structure[37] to learn from small systems 

Adv. Mater. 2019, 31, 1902765

Figure 1.  Machine-learning methodology for materials simulations. a) General overview of how ML-based interatomic potentials are constructed: from left to 
right, assembling a database of representative structural models, computing energies and forces using a reference quantum-mechanical method (typically, 
DFT), expressing the atomic structure in “machine-readable” form using descriptors, and finally regressing (“learning”) the potential-energy surface. b) Dif-
ferent types of descriptors for atomic environments, as commonly used in empirical as well as ML interatomic potentials. c) The basic idea behind the SOAP 
representation,[29] in which the neighbor density of a given atom is expressed through Gaussian functions centered on atoms, controlled by the smoothness 
parameter, σat, and up to a specified cutoff, rcut. Adapted with permission under the terms of the Creative Commons Attribution License.[30] Copyright 2019, the 
Authors. Published by Wiley-VCH. d) Sketch of a neural-network architecture for fitting interatomic potential models, where more information may be found. 
The atomic environment is represented by input functions, G, and the result is an atomic energy, ε. Adapted with permission under the terms of the Creative 
Commons Attribution License.[31] Copyright 2017, the Authors. Published by Wiley-VCH. e) Schematic of kernel methods to interpolate atomic properties (here, 
energies) by comparing an environment (red) with N entries in the reference database (green), after ref. [32]. The approach is based on a similarity or kernel 
function k that returns, for pairs of environments, a value between 0 (entirely dissimilar) and 1 (identical up to symmetry operations).

 15214095, 2019, 46, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.201902765 by U
niversity of Shanghai for Science and T

echnology, W
iley O

nline L
ibrary on [19/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1902765  (4 of 16)

www.advmat.dewww.advancedsciencenews.com

and then to access larger length scales. For example, concerning 
crystal surfaces, the important Si (111) surface forms intriguingly 
complex and stable (2n+1) × (2n+1) type reconstructions (of which 
the 7 × 7 reconstruction has the lowest energy), involving adatoms, 
stacking faults and rings of 10 atoms.[38] These complex surface 
structures can be approximated by a set of smaller motifs (such as 
the adatoms), and these in turn can be included in the reference 
database. Consequently, it was shown that the energetic preference 
for the 7 × 7 reconstruction can be captured by an ML potential, 
whereas state-of-the-art empirical potentials fail at the task (all of 
them incorrectly predicting the unreconstructed surface structure 
to be the most favorable).[39]

For liquid and amorphous structures in particular, iterative 
schemes have been used, in which an initial (coarse) potential 
is fitted to a limited DFT-MD dataset, and then simulations 
with this initial potential are run to create a more diverse set 
of structures. This way, the ML potential “steers” itself into 
regions of configuration space that need to be further explored, 
and large amounts of structures can be quickly assembled, 
much more quickly than would be possible with DFT-MD. This 
iterative training approach was suggested early on already, in 
the creation of the first ML potentials for silicon,[40] sodium,[41] 
and for the phase-change material GeTe,[42] the latter of which 
we will discuss in Section 4.1. Similar strategies were later used 
for amorphous carbon,[43] where hundreds of small structural 
snapshots could be generated in parallel runs using a computa-
tionally cheap interim potential, and the end points of these tra-
jectories were evaluated with DFT and added to the database.[43]

A more pressing challenge concerns the sampling of gen-
eral PESs, which is needed to ensure wide applicability of 
ML potentials—combining robustness and flexibility in the 
high-energy regions with sufficient accuracy in the low-energy 
regions (that is, for the stable and metastable crystal structures). 
A recently proposed strategy is to explore the PES using global 
searches[44–47] that are normally done in DFT-based crystal-
structure prediction.[5] This idea can be taken a step further, by 
exploring and fitting structural space on the fly (and running all 
structural optimizations with interim potentials, requiring DFT 
only for single-point input data), thereby unifying ideas from 
ML potential fitting and crystal-structure searching.[46,48–50] 
Such approaches hold the long-term promise of discovering 
new materials on larger length scales than would be accessible 
to current state-of-the-art methods.[5,49]

2.2. Ingredient 2: Representations for Atomic Structure

With the reference data available, the second task is to describe 
the atomic structure in a suitable form as an input for the fit. 
In the ML jargon, the mathematical objects which encode the 
atomic structure (or, more generally, any information about the 
system) are referred to as “descriptors” (or “features”). Descrip-
tors for local environments, centered on an atom and encoding 
information about its neighbors, range from simple two- or 
three-body terms all the way to complex “many-body” formal-
isms (Figure  1b). All these descriptors must fulfill various 
symmetry requirements, namely, permutational (regarding 
exchange of two atoms of the same kind), translational, and 
rotational invariance. For a descriptor to be usable in practice, it 

is normally confined to a local environment of the atom, up to a 
given cutoff radius (typically, 5 or 6 Å).

Albeit the choices of representation and regressor are not 
necessarily tied to each other, the development of (currently) 
widely used representations for ML potentials has been moti-
vated by a specific fitting framework. Behler's atom-centered 
symmetry functions (ASCFs) were introduced in 2011,[51] and 
today they are popular choices for NN potentials. For kernel-
based methods, these atomic descriptors are used to construct 
similarity measures between atomic environments, which are 
then employed for the regression task. A many-body descriptor 
initially developed for use with GAPs (see below) is the  
so-called “Smooth Overlap of Atomic Positions” (SOAP).[29] 
Within SOAP, Gaussian functions are placed on each atom 
inside the cutoff sphere (Figure  1c), the smoothness being 
controlled by the width of the Gaussian, σat. Two atomic envi-
ronments can be compared by integration over positions and 
rotations; in practice, this is computed efficiently by expanding 
the density in a basis of radial functions and spherical har-
monics, resembling how atomic orbitals are represented in 
quantum chemistry. SOAP can directly compare atomic envi-
ronments with different and arbitrary numbers of neighbors, 
returning a value between zero (totally dissimilar) and unity 
(identical up to symmetry operations); it is invariant under all 
physical symmetries and has continuous values and derivatives.

Recently, the works of Ceriotti and co-workers[52] and Drautz[53] 
revealed that SOAP and many other representations,[54,55] 
including Behler's symmetry functions,[51] are in fact closely 
related and can be derived as projections of the atomic neighbor 
density onto variously chosen basis functions (Figure 1c). Work 
in the community is ongoing, and we expect that new and 
improved basis functions will emerge in the near future.

The relative merits of descriptors in terms of accuracy, 
speed, and the trade-off between the two, are currently being 
investigated;[56–58] the emerging conclusion seems to be that 
several many-body formalisms can be similarly suitable for 
practical use in ML potentials. There are many recent develop-
ments aside from the examples discussed above,[59,60] and we 
may refer the interested reader to a publicly available library of 
different descriptors.[57] We also stress that some approaches 
(such as the Coulomb matrix:[61] a scaled, pairwise table of 
inverse atomic distances) provide a global, rather than atom-
centered representation of a system, which is more useful for 
gas-phase molecules than for solids.

2.3. Ingredient 3: Regression Tools and Implementations

Once the reference data and atomic representations are in 
place, the final step is to carry out the fit itself. In the taxonomy 
of ML approaches, this is a “supervised learning” problem, 
because the input data (structures) are labeled (have refer-
ence energies); more specifically, it represents a regression 
task, because a continuous range of output values (energies) 
is sought. Approaches currently employed in the field can be 
roughly divided into three categories, namely, artificial neural 
networks (NNs), kernel-based methods, and linear regression.

The description of potential-energy surfaces by artificial NNs 
builds on ideas from the 1990s[62] and 2000s[63–65] when such 

Adv. Mater. 2019, 31, 1902765
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networks were constructed for specific problems with fixed num-
bers of atoms in a system (e.g., an H2 molecule on a surface[63]). 
Over the last few years, NNs have gained enormous interest—
driven by the idea to “learn” local, atomically short-sighted ener-
gies, which are then summed up to yield the total energy.[40] 
This approach makes it possible to access (much) larger system 
sizes than those encountered at the fitting stage, and it can make 
the resulting potentials more general, less dependent on which 
particular problem is to be studied. This idea of locality forms 
the basis of ML potential development as of today.

NNs are a set of mathematical functions that aim at resem-
bling the functionality of neurons in the brain. Neurons, 
referred to as “nodes” in the context of a NN, accumulate and 
weigh input signals and “fire” (giving an output) once a cer-
tain threshold value is reached. This is achieved by a nonlinear 
mathematical activation function; normally, several consecu-
tive “hidden” layers (functions) are coupled, in which case one 
speaks of a “deep” NN. A simple example for such an architec-
ture[31] is sketched in Figure 1d: the atomic structure is encoded 
by descriptors that form the “input layer,” from which infor-
mation is passed to (in this example) two hidden layers and 
finally to the output; the hidden layers thereby carry no physical 
meaning on their own. To generate an NN potential, one will 
define the architecture (the number and shape of the nodes, the 
number of layers, etc.) and then “train” the model by optimizing 
the weights, tuning them such that the network's error on a set 
of known data is minimized. A more detailed introduction to 
NN-based ML potentials and the associated methodology may 
be found in refs. [31] and [66].

An alternative approach is given by kernel methods. In 
these, an atomic property is interpolated as a linear combina-
tion of kernel functions, the latter measuring how similar a 
new configuration's descriptor is to those of the reference data. 
The property is typically a local energy, or a force acting on an 
atom, and the kernels can be understood as similarity meas-
ures (on a scale from zero to one) between the new environ-
ment and those contained in the database, both of which are 
represented by the descriptor. The regression coefficients that 
weigh each kernel basis function are computed during the fit-
ting using simple linear algebra. Kernel ridge regression (KRR) 
and Gaussian Process Regression (GPR) are two currently 

employed techniques, differing only slightly in how these 
coefficients are computed. These methods rely on a carefully 
designed kernel function that is appropriate for the problem 
(such as the SOAP kernel in the present case), whereas NNs 
are more general—but often need more data to balance out 
their extra flexibility.

With the field evolving so rapidly, it is difficult to provide 
an accurate snapshot of its development. We collect in Table 1 
several approaches that combine a theoretical framework and a 
practical implementation. Beyond the two major categories dis-
cussed herein (NNs and kernel methods), this notably includes 
emerging methods based on linear fitting, such as the SNAP[55] 
and Moment Tensor Potential[54] approaches; a complete review 
of all advances in the field is not possible within the scope of 
this Progress Report, but we stress that these methods are 
under active development as well. All methods referenced in 
Table 1 are primarily focused on condensed phases, as opposed 
to molecules (for which increasingly powerful ML potentials 
are being developed just as well[77–79]), and they are imple-
mented in freely available simulation software, such that they 
can be directly used by anyone.

We conclude this methodological overview by stressing 
that all methods discussed here lead to “offline-trained” ML 
potentials: one generates (and extensively validates) a suitable 
potential for a specific material, and then applies it without 
further modification. We also mention on-the-fly or “online-
trained” ML potentials:[80–82] these start with a quantum-
mechanical (again, normally DFT-based) MD simulation 
and train an ML potential while the simulation is being run. 
Numerical measures are put in place to monitor the degree of 
extrapolation (that is: do we need additional data at this point?), 
and after a while, DFT evaluations are only needed when the 
potential runs outside its “comfort zone.” The resulting poten-
tials will be specific to the problem being studied:, e.g., an 
on-the-fly fitted ML potential for TiO2 will not be expected (or 
required) to describe all the different crystal structures of ele-
mental Ti correctly. In turn, such techniques promise an even 
much broader availability of ML-driven atomistic modeling in 
materials research. As a direct consequence, it becomes more 
and more important for the wider community to be aware of 
the nature, benefits, and limitations of such potentials.

Adv. Mater. 2019, 31, 1902765

Table 1.  Selected examples of current methods and available implementations for ML-based interatomic potentials that aim primarily at condensed-
phase materials modeling. We do not add web addresses, as these may be subject to change, but they are easily retrieved using a web search. The 
fitting methods (“regressors”) include neural networks (NN), kernel methods such as Gaussian process regression (GPR) and kernel ridge regres-
sion (KRR), and linear fits.

Method Refs. Regressor Implementation

Artificial neural networks (Behler) [40] (2007) NN Standalone (“RuNNer”); LAMMPS interface[67]

Gaussian approximation potentials (Bartók and Csányi) [68] (2010) GPR GAP code (custom); LAMMPS interface

Spectral neighbor analysis potential (SNAP) (Thompson) [55,69] (2015) Linear fit LAMMPS interface

Adaptive, generalizable, and neighborhood informed (AGNI) 

force fields (Ramprasad)

[70–72] (2015) KRR LAMMPS interface

aenet (Artrith) [73] (2016) NN Standalone (“aenet”)

Amp (Korshidi and Peterson) [74] (2016) NN Standalone (“amp”); LAMMPS interface

Moment tensor potentials (Shapeev) [54,75] (2016) Linear fit LAMMPS interface

DeePMD (E) [76] (2018) NN Standalone (“DeePMD-kit”); LAMMPS interface
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3. High Accuracy for Crystalline and Amorphous 
Materials: The Case of Silicon

We begin by illustrating the accuracy that ML potentials can reach 
in atomistic simulations for materials science. As a case in point, 
we choose elemental silicon, which has traditionally been a promi-
nent test system for materials modeling. In terms of empirical 
interatomic potentials, the foundational models by Stillinger 
and Weber[83] and Tersoff[84] were introduced for silicon, as was, 
a decade later, the environment-dependent interatomic potential 
(EDIP) family.[85] Revised and further improved empirical silicon 
potentials are continuing to be reported, such as one very recently 
optimized for the graphene-analogous 2D structure of “silicene.”[86] 
On the DFT side, having been able to describe the aforementioned 
silicon (111) surface was a major success at the time.[87] Far beyond 
the computational relevance and the deep academic interest, e.g., 
in the nature of its amorphous (noncrystalline) phase,[88] silicon 
is a centrally important material for applications: in crystalline 
form, it currently forms the backbone of the electronics industry; 
in amorphous form, it is used in solar cells,[89] thin-film transis-
tors,[90] or as an anode material for batteries.[91]

Silicon has been the verification and application case of 
choice for ML potentials as well, since the first high-dimensional 
NN potential was developed in 2007 by Behler and Parrinello: 
in their initial work, the neighbor statistics in the liquid phase 
were computed, and shown to outperform various high-quality 
empirical potentials.[40] Directly following, in 2008, Behler et al. 
applied their NN potential to the phase transitions in silicon 
under pressure,[92,93] using a technique known as metadynamics 
to jump over barriers in the PES (from one local minimum to 
the other).[94] In these simulations, the Cmca phase of silicon 
had not been included in the fit but was readily discovered by 
the ML-potential-driven metadynamics simulations, which 
already points toward the applicability for crystal-structure 
searching. Further early developments in the field were tested 
and benchmarked for silicon: Bartók et  al. computed elastic 
properties of diamond-type silicon (as well as other semicon-
ductors) with the first GAPs in 2010,[68] and Li et  al. used the 
material to test their on-the-fly ML scheme in 2015.[80]

Subsequently, silicon served to explore the question as to 
whether a “general-purpose” ML potential can be created for 
a given element.[95] Such a general potential should be able to 
accurately describe a very wide range of atomic configurations, 
including multiple phases, surfaces, and defects, for which the 
training database is explicitly “designed,” but at the same time 
give sensible results for completely new kinds of configurations 
(e.g., structures found during systematic random structure 
search, or more complicated structural defects that were 
not included in the training but may occur in experiment). 
Following this logic, a systematic database of reference configu-
rations was constructed for silicon (Figure 2a).[95]

The first necessary test for the resulting potential is the per-
formance in regard to the “usual” quality indicators, which 
includes standard material properties that are relevant for prac-
tical applications (such as the bulk and shear modulus). Run-
ning these tests and comparing their outcome to the arsenal 
of high-quality empirical potentials available (Figure  2b) 
allows one to quickly appreciate the usefulness of the method.  
It should be noted, as always when considering ML potentials, 

that these are normally orders of magnitude slower than empiri
cal potentials (yet orders of magnitude faster than DFT).

Although such validation against DFT-computed properties is 
an important step, the most important application for ML poten-
tials is in those simulation scenarios that are completely out of 
reach for DFT. A typical example is the formation and propaga-
tion of cracks (Figure 2c), a microscopic effect that has tremen-
dous importance for the macroscopic behavior of materials. In 
crack simulations, a large piece of material is “cleaved” across a 
certain crystallographic direction by applying strain on either 
side, and one monitors whether a pre-formed crack tip propa-
gates (brittle failure) or blunts (plastic deformation). Because of 
the ongoing breaking and making of bonds during fracture, this 
is a very challenging problem for atomistic simulations. Indeed, 
empirical interatomic potentials may have trouble correctly 
describing these mechanisms even qualitatively, and it was shown 
how suitable corrections such as an environment-dependent 
cutoff can help to restore the correct materials behavior.[99] The 
ML potential described in ref. [95] also correctly captures this 
qualitative behavior—but what is more, it recovers even subtle 
bond-rotation mechanisms that have previously been only seen 
in extremely expensive QM/MM simulations (mixing a quantum-
mechanical method with a force field), using DFT at the crack 
tip.[100] Figure 2c also illustrates an intrinsic feature of GPR, the 
ML method used for this particular potential: the “predicted error” 
measures how far the potential is from configurations that it has 
encountered during training (indicating the degree of extrapola-
tion), which here arrives at a few meV per atom, given by color 
coding in Figure 2c.[95] We note that tests for extrapolation are also 
done for NN potentials:, e.g., by fitting several networks in par-
allel and determining the variance between them.[31]

Beyond the crystalline phases, their phase transitions and 
engineering-relevant properties, the amorphous phase of silicon 
is also of wide interest, and similarly a challenging case for atom-
istic simulations. Traditionally, DFT-based studies have reported 
calculations for small melt-quenched unit cells, but such simu-
lations cannot normally reach below ≈1012 K s−1 cooling rates, 
corresponding to roughly one million timesteps. In contrast, 
using an ML potential, it was possible to reduce the quench rate 
to 1011 K s−1,[97] later even to 1010 K s−1.[30] One cannot probe the 
local structural environments directly by imaging techniques, 
but one can investigate them by comparing to a set of different 
experimental observables. One such tool is NMR, where shifts 
can be computed from first principles (Figure 2d).[101]

Very recently, simulations using an NN potential were 
reported for the (structurally even more complex) liquid phase 
of silicon and the nucleation of crystals.[102] In these studies, the 
authors emphasize the importance of having a flexible potential 
that can treat the structurally very different local environments 
that occur during the formation and growth of crystallites in 
the disordered phase: seed nuclei might look very different 
from the corresponding bulk phases that grow out of them. 
In a more general sense, understanding crystal nucleation is a 
very important goal for chemistry and materials science.[103]

We summarize the present section in Table 2. We expect that 
the accurate modeling of silicon using ML potentials will con-
tinue to be an important benchmark for methods development, 
and for linking ML potentials to other (high-level) simulation 
techniques. For example, the melting point of Si was very 

Adv. Mater. 2019, 31, 1902765
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recently described by random phase approximation (RPA) com-
putations, arriving within a few percent of the experimental 
reference.[104] Looking toward the future, it seems promising to 

fit to such RPA data (given that gradients and thus force data 
are available), rather than DFT. Once the fit is done, the cost of 
using the ML potential is independent of the level of electronic 

Adv. Mater. 2019, 31, 1902765

Figure 2.  Highly accurate materials modeling using ML-based potentials, illustrated for the example of a recently developed silicon potential (see Table 2 for 
broader context). a) Representative structures from a large reference database, for which DFT energies have been computed.[95] Structures were visualized 
using VESTA.[96] b) Numerical errors for key engineering properties, comparing the ML potential (GAP; red) to several state-of-the-art empirical potentials and 
to density-functional tight-binding (DFTB), which are widely used to study materials on large length scales. Unsigned errors are given relative to DFT results. 
Data are taken from ref. [95], where a much more detailed set of benchmarks may be found. c) Crack propagation in crystalline silicon simulated by GAP. Color 
coding shows the prediction error, which is intrinsically obtained in the GAP framework, and allows for uncertainty quantification. Adapted with permission 
under the terms of the Creative Commons Attribution License.[95] Copyright 2018, the Authors. Published by American Physical Society. d) NMR fingerprints of 
amorphous silicon (a-Si) samples created in ML-driven melt-quench simulations with progressively slower quench rates and increasingly high structural order; 
Adapted with permission under the terms of the Creative Commons Attribution License.[97] Copyright 2018, the Authors. Published by American Chemical 
Society. Experimental NMR data are shown for comparison. Adapted with permission.[98] Copyright 1990, American Physical Society.

Table 2.  Selected milestones in the modeling of elemental silicon using ML potentials.

2007 First neural-network (NN) potential for bulk silicon and tests for the liquid phase Behler and Parrinello[40]

2008 Description of high-pressure phase transitions in silicon using NN potentials and metadynamics Behler et al.[92,93]

2010 First Gaussian approximation potential (GAP) model for diamond-type silicon and tests for elastic properties Bartók et al.[68]

2015 Development of an on-the-fly learning scheme using the example of silicon Li et al.[80]

2017 Correct energy ranking of the silicon (111) and (100) surface reconstructions using a GAP Bartók et al.[39]

2018 Description of surface energies, dislocations, cracks, etc. with a general-purpose GAP Bartók et al.[95]

2018 Description of amorphous silicon with high accuracy by GAP-driven slow quenching; validation against experimental 

probes (calorimetry, diffraction, 29Si NMR)

Deringer et al.[97]

2019 Description of liquid silicon and crystal nucleation from the liquid, using a DeePMD potential Bonati and Parrinello[102]
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structure method that was used to produce the training data. 
This promises access to the modeling of liquid, amorphous, 
and nanocrystalline materials at computational levels of quality 
that are currently completely out of reach for such systems.

4. Applications to Materials-Science Problems

The long-term goal for ML potentials must be to solve chal-
lenging problems, in a way akin to DFT and empirical poten-
tials, but addressing new challenges that neither of the 
established approaches can handle. The focus, thereby, shifts 
away from the numerically accurate description of energies and 
forces—which is very much needed, of course, but which does 
not solve an application problem on its own. Instead, one also 
needs flexibility and transferability, to be able to explore previ-
ously unknown scenarios and structures: this is not a trivial 
task for ML potentials, because they lack inherent physically 
informed functional forms. Truly predictive potentials will need 
to describe diverse atomic environments as they may occur in 
manufacturing and practical applications of materials: during 
melting and solidification, mechanical shearing, or deposi-
tion and growth of thin films, to name just a few examples.  

We highlight here three selected areas of current research 
interest where applications of ML potentials to materials-
science problems have already become reality.

4.1. Structure, Dynamics, and Function in Phase-Change Materials

Phase-change materials (PCMs) for data-storage applications are 
a group of chalcogenides, most prominently Ge—Sb—Te alloys, 
that can be rapidly and reversibly switched between crystalline 
and amorphous phases with a peculiar contrast in reflectivity 
and electrical resistivity (Figure  3a).[105] This property contrast 
can be exploited to encode digital “ones” and “zeroes” in memory 
devices.[105] The need for new data-storage and data-processing 
technologies is obvious, nowadays more than ever: ongoing 
efforts to optimize the switching mechanisms are bringing 
sub-nanosecond memory operations within reach,[106–108] and 
even the use of PCMs in brain-inspired computing has been 
proposed.[109] Extending their range of applications further, PCMs 
are also rapidly garnering interest as candidate materials for 
photonic devices such as switchable displays (Figure 3b)[110–112] or 
thermoelectrics for waste heat recovery (e.g., by alloying GeTe with 
guest atoms to modify the atomic and electronic structure).[113–115]

Adv. Mater. 2019, 31, 1902765

Figure 3.  Phase-change materials (PCMs) for data storage, photonics, and thermoelectrics, and their atomistic modeling using ML-based interatomic 
potentials. a) The functional principle of PCMs, which are switched between a crystalline and an amorphous phase with notably different physical 
properties;[105] Adapted with permission.[118] Copyright 2015, Wiley-VCH. b) An example application in switchable, flexible displays, where crystal-
line (top) and amorphous (bottom) layers lead to a change in colors due to their different optical properties.[111] Reproduced with permission.[111] 
Copyright 2014, Springer Nature. c) An illustration of the relevant system sizes, here for the ternary PCM Ge2Sb2Te5, emphasizing the capabilities of 
ML potentials.[129] The small cell is one that is accessible to DFT-MD; the larger is one that is accessible to ML potentials; both are drawn to scale. 
Reproduced with permission.[129] Copyright 2018, American Chemical Society. d) Simulation of a GeTe nanowire, reaching device-size models: in this 
case, the center of the hexagonal wire has been liquefied by heating whereas the bottom part was kept fixed in the crystalline structure during the 
simulation.[124] Reproduced with permission.[124] Copyright 2017, American Chemical Society. e) Crystallization simulations of GeTe, starting from a fully 
amorphous phase at various temperatures, as described in nanosecond-long MD simulations by an NN-type potential.[130] Adapted with permission.[130] 
Copyright 2013, American Chemical Society. f) Thermal conductivity in GeTe;[131] this property can now be simulated using ML potentials.[28] Repro-
duced with permission.[131] Copyright 2012, American Physical Society.
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While the structures of crystalline PCMs have long been 
known and can be accurately studied using diffraction experi-
ments,[116–118] a similar understanding of the structures and 
properties of the amorphous phases has remained a major 
challenge. DFT-MD simulations are therefore one of the 
primary approaches for obtaining insight into amorphous 
PCMs.[119,120] The challenge is exacerbated by the fact that the 
amorphous phases are structurally very complex—with coex-
isting tetrahedral and octahedral-like fragments,[121] and with 
a substantial number of homopolar GeGe bonds[120] that are 
relevant to aging (resistivity changes over time) in amorphous 
PCMs.[122–124] This large structural diversity makes it very dif-
ficult to create empirical potential models for PCMs.

The relevant system sizes are illustrated in Figure  3c,d. 
Typical DFT-MD simulations in this area encompass on the 
order of 300–400 atoms,[107,125,126] having very recently reached 
up to 900 atoms in one instance,[127] but this is only possible 
with fast supercomputers and sophisticated algorithms.[128] 
In contrast, an ML potential readily makes system sizes of 
many thousand atoms accessible, as we show for a struc-
tural model of bulk amorphous (a-) Ge2Sb2Te5, containing  
7200 atoms (Figure 3c),[129] and of a partially melted GeTe nano-
wire, described by an even more complex structural model with 
over 16 000 atoms (Figure 3d).[124]

An NN potential for GeTe was introduced by Sosso et al. in 
2012 already.[42] The first and most central application was in 
modeling crystallization (the atomistic process leading from a 
“zero” to a “one” in digital memories).[130] MD simulations, ini-
tially carried out in a system containing 4096 atoms, showed 
how at low temperature a single nucleation event induces 
crystal growth, whereas at high temperature multiple nuclei 
emerge. Figure  3e illustrates how at a temperature of 650 K, 
the number of “crystal-like” atoms (as measured by a suitable 
structural order parameter) quickly approaches the number of 
atoms in the system. The process is completed in less than a 
nanosecond at high temperature (red) but takes much longer at 
lower temperature (blue).

GeTe has also served as an example for the prediction of 
thermal properties (Figure 3f): the thermal conductivity, κ, was 
computed using the above-mentioned NN potential.[131] In that 
work, the thermal conductivity has been studied by different 
approaches, namely, Allen–Feldman plus Boltzmann trans-
port equation (AF+BTE) and also by equilibrium molecular 
dynamics (EMD). More details of the methodology and the spe-
cific technical questions pertaining to GeTe have been reviewed 
elsewhere.[28]

Open questions in applying future generations of ML poten-
tials to PCMs fall into two categories, defined by the chemical 
composition. On the one hand, ongoing work is concerned 
with the Ge–Sb–Te system, where further optimizations of scal-
ability and switching speed are needed, and the recent devel-
opment of a memory device based only on Sb (“monatomic” 
phase-change memory)[132] attests to the continued relevance of 
this material system. The nature of defect states in amorphous 
Ge2Sb2Te5 has been studied very recently using a large number 
of structural models generated in ML-driven simulations.[133] 
Besides the bulk phases (Figure 3c) and nanowires (Figure 3d) 
discussed in this Progress Report, it would be highly valu-
able to understand more thoroughly the atomistic structure 

and behavior of superlattice structures,[134] continuing along 
the lines of existing DFT studies[135] but now on larger length 
scales. We expect that further developments in ML potentials 
for the ternary Ge–Sb–Te system will pay good dividends in 
the long run. On the other hand, active research in the PCM 
field focuses on the systematic selection of guest atoms and 
dopants,[136] as recently demonstrated for Sc-alloyed Sb2Te3.[107] 
These systems will require careful optimization of ML poten-
tials due to the (even) higher chemical and structural com-
plexity involved. However, once a successful “recipe” has been 
established, it could be applied to various types of dopants (e.g., 
different transition metals), and even to other material classes.

4.2. Nanoparticles for Catalysis

Nanoparticles (NPs) are another vast research field where 
knowledge of the atomic-scale structure is challenging but 
mandatory. Chemical synthesis techniques allow for an 
increasing degree of control over the shapes and sizes of 
NPs, and this has been going hand in hand with increased 
computational capacity.[137] The surface composition of crystal-
line materials as a function of their chemical environments[138] 
and reaction mechanisms on pristine and defective crystal sur-
faces have been widely studied with DFT. On the other hand, 
nanoparticle materials are often structurally different from the 
corresponding bulk phases, and their modeling and under-
standing has remained an open challenge—with which ML 
potentials promise to help.

Figure  4a introduces the problem by way of an example: a 
TEM image with sufficiently high resolution to allow for dis-
cerning individual atoms.[139] It is evident that the center of 
the particle exhibits crystalline order whereas the outer region 
is strongly disordered. The disordered outer region is very dif-
ficult to fully quantify with imaging and other structure-deter-
mination methods. Furthermore, it is not enough to study one 
single particle but one needs an entire ensemble of those.

Nanoparticles are used as catalysts, and therefore under-
standing their structure is only the first step; one then needs to 
model the behavior of guest atoms and adsorbates as well. We 
stress, in this context, that very early work in the field (before 
high-dimensional ML potentials with finite cutoff spheres were 
introduced) already dealt with molecules on surfaces (in that 
case, with crystalline order and a fixed number of atoms).[63–65]  
Two examples that have recently been explored with high-
dimensional ML potentials are the CO oxidation on mixed Cu/
CeO2 NPs (Figure 4b)[139] and the CO2 reduction to give useful 
feedstock molecules which is performed, for example, on mixed 
gold/copper metal NPs (Figure 4c).[140]

Surface energies as computed from DFT can be directly 
translated into a so-called Wulff construction,[141] giving infor-
mation about the equilibrium shape of the NP. Figure 4d shows 
that ML potentials can reproduce these predicted shapes with 
good accuracy. The major challenge, however, is to describe 
NPs beyond their idealized surfaces, and beyond what is acces-
sible to DFT-driven simulations.

ML potentials can be combined with any suitable simula-
tion tool that requires the evaluation of energies as a function 
of structure: the majority of this Progress Report focuses on 

Adv. Mater. 2019, 31, 1902765
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MD simulations, but longer length and time scales are acces-
sible to other approaches, such as Monte Carlo simulations. 
Such a combined approach has been recently used for Cu/Au 
NPs.[140] Figure 4e shows how as the simulation progresses, the 
“onion-like” structure of the NP is recovered. This analysis is 
not restricted to the pristine (gas-phase) particles, but it may 
include other species such as water molecules, which are 
important when the particle is in solution (Figure  4f). Future 
work may now deal with more complex entities, such as ligands 
coming from a chemical synthesis route. ML potentials for 
modeling these molecules are certainly available.[77,78]

Other, recent work in this area includes the structural mode
ling of NPs on support surfaces, using various flavors of ML 
potentials. Kolsbjerg et  al. studied NPs on a surface and used 
the resulting structural models to further study the adsorption 
of CO molecules with DFT methods.[47] Furthermore, a “mul-
titribe” evolutionary search was conducted where information 
from a given particle size is transferred to a larger or smaller 
size intermittently during the iterations.[142] Both studies exem-
plify the usefulness of fast and flexible ML potentials being 
combined with global exploration. Such methods could, in the 
future, assist with the large-scale screening for NPs with desir-
able properties and the targeted synthesis in the laboratory.

4.3. Carbon Nanomaterials

Carbon is among the structurally most diverse elements, which 
goes back to its unique ability to form twofold (“sp”), three-
fold (“sp2”), and fourfold (“sp3”) coordinated atomic environ-
ments. This structural diversity is reflected in many known 

and hypothetical crystalline structures,[34,143] metastable over an 
unusually wide stability window,[144] and in a plethora of disor-
dered phases with very diverse properties.[145,146] Between the 
ideally ordered structures of diamond and graphite on the one 
hand, and fully disordered amorphous structures on the other 
hand (Figure 5a), there are partly ordered, “porous” and “hard” 
carbon materials,[147–150] a few examples of which are shown in 
Figure 5b. These materials are of utmost importance for practical 
applications, for example, for energy storage and conversion.[151]

From the viewpoint of simulations, carbon materials have 
been widely described using empirical potentials.[152–154] They 
have also been of interest very early on for ML-type potentials: an 
initial NN-type model was developed for the diamond-graphite 
coexistence line[155] and applied to simulate the mechanisms by 
which diamond forms from graphite under compression.[156] 
Other phases that might be synthesized from cold compression 
of graphite are of interest as ultrahard materials,[157] and could 
be explored in the future using such ML potentials.

We will focus here on more disordered, amorphous carbons, 
which encompass a wide field with different structural and 
chemical properties, e.g., “tetrahedral” amorphous (ta-C)[158]  
and porous carbons.[147–150] In 2017, a GAP model for carbon 
was introduced and validated for properties that include DFT-
predicted surface energies and experimentally measured elastic 
moduli.[43] Shortly after, Caro et al. performed large-scale depo-
sition simulations using this potential—which, for the first 
time, reproduced the 90% sp3 content in dense ta-C films and 
clarified the microscopic growth mechanism of the material, 
which had been under debate for three decades (Figure 5c).[159] 
ta-C has important applications as protective coating for friction 
management. More recently, both high- and low-density forms 

Adv. Mater. 2019, 31, 1902765

Figure 4.  Nanoparticles and their reactivity as a key application perspective for ML potentials. a) Example TEM images of as-synthesized nanoparticles: 
the atomic positions can be visualized with modern techniques, but which species are located where (and is there a preferred surface species, which 
would be relevant for catalysis)? Reproduced with permission.[139] Copyright 2016, American Chemical Society. b,c) Two important reactions in nanopar-
ticle catalysis, both of which have been exemplarily studied using ML potentials;[139,140] schematics after ref. [139]. d) The Wulff construction, translating 
a computed surface phase diagram (top) into equilibrium shapes that minimize the overall surface energy (middle, DFT; bottom, NN potential; for a 
general overview, see ref. [137]). e) Monte Carlo simulations on Au/Cu nanoparticles, driven by an NN potential.[140] Exemplary snapshots are shown 
that illustrate how the “onion”-like structure gradually emerges. f) Same for an Au/Cu nanoparticle where the ML potential includes four species, adding 
also H and O and, therefore, a description of explicit water molecules around the particle. Snapshots have been taken from the Supporting Information 
of ref. [140], where entire videos are provided. Panels d–f) adapted with permission.[140] Copyright 2014, American Chemical Society.
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of a-C have begun to be employed as electrode materials in 
electrochemistry, in particular, in the context of in vivo analyt-
ical electrochemistry, owing to its superior biocompatibility.[146] 
The surface chemistry of a-C is complex, due in part to the dis-
ordered nature of the material but also due to the many dif-
ferent types of O-, H-, and N-containing functional groups that 
can become attached to the surface, either during the manufac-
turing process or when the materials are put in contact with an 
electrolyte.[146]

Enabled by the computational efficiency of ML-based intera-
tomic potentials, the large variety of structural motifs and (sur-
face) functional groups that are present in a-C materials can be 
explored with a level of detail that is out of reach for simula-
tions using DFT.[160,161] These computational atomistic models 
can then be compared to experimental data, such as X-ray or 
Raman spectroscopy, to elucidate the surface chemistry of the 
materials and ultimately make the connection between atomic 
structure and application performance.

The range of applicability of ML-based potentials to study 
interfacial chemistry is of course not limited to carbon mate-
rials. We expect that, in the near future, these studies will 
be extended to understand the surface chemistry of other 
materials used in electrocatalysis and electrochemistry. A bit 
further down the line, we also expect that, as accurate ML-
based models of water become available,[162] we can gain an 

unprecedented level of understanding about the structure of 
aqueous/solid interfaces, where the effects of solvation are cru-
cial in determining reaction mechanisms and free energy bar-
riers for chemical reactions. An important application of ML 
potentials in this regard will be the systematic computational 
discovery of new efficient catalysts for CO2 reduction and H2 
production.

With regard to applications in battery materials, disordered 
and “porous” carbons have been studied using the aforemen-
tioned carbon potential,[163] following ideas initially pursued 
with empirical interatomic potentials.[153,164] Building on a com-
putational description of pure disordered carbon, it was also 
shown how the insertion of Li ions in carbon can be described 
by a difference potential.[165] In this context, it is interesting 
to mention two separate studies that develop NN models for 
Li in amorphous silicon anodes:[166,167] these works provide a 
thematic link to the wide importance of silicon (Section  3) 
and underline the possibilities of ML potentials especially for 
energy materials modeling.

5. Challenges and Future Directions

The usefulness of ML-based interatomic potentials has now 
been firmly established, through examples shown in this 

Adv. Mater. 2019, 31, 1902765

Figure 5.  A Gaussian approximation potential (GAP) for carbon nanomaterials and example applications. a) Fragment from a GAP-generated structural 
model of a-C, emphasizing the coexistence of various ring fragments.[43] Reproduced with permission.[43] Copyright 2017, American Physical Society.  
b) TEM micrographs of three different carbon materials as used in electrochemistry, differing in their structural order (“graphite-like-ness”) which increases 
from left to right.[150] Adapted with permission.[150] Copyright 2017, American Chemical Society. c) Slab model of ta-C generated in explicit growth simula-
tions using the carbon GAP, modeling the impact of one atom at a time. Structural drawing created with data from ref. [159] d) The most relevant surface 
motifs as found in DFT-MD simulations based on a library of GAP-generated surface models.[160] Adapted with permission.[160] Copyright 2018, American 
Chemical Society. e) Structural models of disordered, sp2-rich carbon materials, generated in GAP-MD annealing simulations from amorphous precursors. 
f) Intercalation of Na atoms, modeling the atomistic processes pertinent to Na-ion batteries. Panels e) and f) adapted under the terms and conditions of 
the Creative Commons Attribution 3.0 Unported Licence.[163] Copyright 2018, The Authors, published by The Royal Society of Chemistry.
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Progress Report and in the rapidly evolving body of literature in 
the field, combining new methodology with practical research 
questions. We discuss here selected challenges, leading to a 
perspective for a hierarchical approach to ML potential fitting 
(Figure 6a), and thereby to our vision of how we expect that ML 
potentials can enable a new level of realism in the modeling 
and understanding of materials in the future.

Current ML potentials are “fragile”: if they are fitted to be 
highly accurate for a certain narrow range of configurations, 
they are not very accurate elsewhere. This is an intrinsic fea-
ture of fitting functions in high dimensions (referred to as the 
“curse of dimensionality”). At the same time, they may fail—
even catastrophically—when taken to a region of configuration 
space that they have not encountered before (generalization). 
Sometimes, it is clear a priori where those regions are: a simple 
example is the strong exchange repulsion between two atoms 
that come very close to one another. Rather than fitting to the 
reference quantum-mechanical data as they are, one may start 
by subtracting an empirical baseline from the input data and 
adding it back only once the ML prediction is complete; this 

has been done, e.g., in the construction of the silicon poten-
tial discussed in Section 3.[95] Other baselines could include, 
for example, simple fixed-charge models for electrostatics[68] or 
even semiempirical quantum mechanical models, which brings 
us to the next issue.

Current ML potentials are “short-sighted”: typical cutoff radii 
enclose the first few coordination shells, but not more. Expe-
rience has shown that this is a very successful approach for 
predominantly covalent and metallic materials;[40,41] however, it 
reaches its limits when long-range interactions become impor-
tant, most centrally in ionic solids but also in those (ubiquitous) 
systems that are dominated by van der Waals dispersion. Fortu-
nately, developments in the field suggest that the parameters 
of electrostatics models (such as partial charges, local dipoles 
or polarizabilities) can be fitted using ML with local descrip-
tors.[168–170] These could now be made part of a hierarchical 
(and more general) ML potential fitting framework.

Again, previous work suggests this to be a promising direc-
tion: successful ML potentials for simple ionic systems have 
been constructed that “learn” electrostatic information as a 
function of atomic structure. Behler and co-workers showed 
how the electrostatic energy in solids can be described by envi-
ronment-dependent charges that are fitted through a separate 
NN, later summing up the short- and long-range terms,[169,171] 
similar in spirit to how an Ewald summation is done. Figure 6b 
shows an example for such a simulation: a metallic Cu NP rests 
atop an ionic ZnO surface—again stressing the importance of 
nanostructures discussed in Section  4.2. More recently, Goe-
decker and co-workers proposed an environment-dependent 
charge equilibration scheme for ionic systems, initially intro-
duced for NaCl clusters in the gas phase,[170] constructing a 
simple force field just from electrostatic terms. Emerging appli-
cations of this method deal with surface reconstructions of flu-
orite-structured materials[173] and the structural prediction of a 
stable TiO2 nanosheet (Figure 6c), found in global exploration as 
accelerated by the ML potential.[172] The latter structure appears 
to be interesting due to its electronic band gap, which is much 
larger than that of known (3D) TiO2 polymorphs—which might 
make the material a candidate for photocatalytic hydrogen pro-
duction, given that a way can be found to synthesize it (e.g., 
through epitaxial growth on a suitable substrate).[172] However, 
a framework that would “learn” all long-range terms and hier-
archically combine this with a short-range fit, thereby making it 
generally applicable to all kinds of solids (in particular weakly 
ionic ones), is lacking so far.

Current ML potentials deal with inorganic materials or 
molecules—but not normally with both: In terms of transfer-
ability, DFT has been successfully applied to study molecular 
systems as well as solids, ranging from gas-phase chemistry all 
the way to condensed-matter physics. On the contrary, while 
there are connections between the two worlds, for example 
in the description of bulk liquid water,[162] a truly unified ML 
potential framework that would at the same time treat a wide 
range of inorganic solids and organic molecules is not currently 
available. One of the challenges here is linked to the localized 
(delocalized) nature of electrons in molecules (periodic solids), 
respectively, and how this manifests in the different physical 
models and simplifications that can be made for them. For 
example, a thorough treatment of electrostatics in extended 

Adv. Mater. 2019, 31, 1902765

Figure 6.  Hierarchical ML models for interatomic potentials as one per-
spective for possible developments in the coming years. a) Schematic 
of a hierarchical approach, starting with an empirical baseline (e.g., the 
exchange repulsion between atoms that come very close to one another), 
to which “machine-learned” terms are then gradually added. b) Example 
of a simulation carried out with an NN model that combines short-range 
bonding and long-range electrostatics, fitted with separate NNs and then 
summed up, applied to a metallic Cu cluster at an ionic ZnO surface.[171] 
Reproduced with permission.[171] Copyright 2013, WILEY-VCH Verlag 
GmbH & Co. KGaA, Weinheim. c) A TiO2 nanosheet, identified in struc-
ture searches accelerated by a charge-equilibration model, relying directly 
on an NN representation of atomic charges.[172] Structural model drawn 
with data from ref. [172].
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crystal structures requires complex position-dependent polar-
izability and screening to be described, whereas molecules 
can often be treated “in vacuo” to first approximation. In turn, 
molecules are often treated at much higher (post-DFT) levels 
of theory, reaching further improved accuracy. Being able to 
incorporate such high-level quantum-chemistry method into 
fitting frameworks for materials could aid the construction 
of ML potentials strongly: by adding corrections on top of the 
(DFT-fitted) long- and short-range parts, thereby contributing 
the final step of the hierarchical approach outlined here (top of 
the pyramid in Figure 6a).

Current ML potentials deal with specific compositions: 
Another aspect where ML potentials are still severely lacking 
transferability is in moving from one material system to 
another. At the moment, ML potentials are not transferable 
in alchemical space (that is, when atoms of different species 
are included). If one wants to study the alloying of, say, Si 
and C, the existing ML potentials for both elements as dis-
cussed in the previous sections cannot be used on their own. 
Instead, a new potential would need to be constructed that is 
able to handle both elements, either by extending the existing 
elemental potentials (and databases) to incorporate the Si–C 
interactions, or by training a Si–C potential completely from 
scratch. In this case, a more automatic recipe for database 
generation and potential training would be highly beneficial, 
since it would allow us to generate new potentials as the need 
for them arises, without the large amounts of expert human 
time that is currently needed for this task. This would sig-
nificantly increase the number of applications suitable for ML 
potentials and their wide accessibility to the community, sim-
ilar to the current widespread use of DFT across many fields. 
In an effort to quantify this transferability, standardized tests 
for both robustness and accuracy of ML potentials would be 
highly beneficial—for instance, in the spirit of a recent com-
munity-wide benchmark of many DFT codes that are currently 
in use.[8]

6. Conclusions

Atomic-scale simulations are routinely used to clarify and 
understand the structure of matter, ultimately aiming to design 
new and improved materials for applications. ML-driven 
simulation methods are currently emerging as a powerful 
addition to the toolbox of materials modeling, and they are 
quickly becoming accurate and flexible enough to be applied 
to real-world materials-science problems. Due to their intrinsi-
cally physically and chemically agnostic nature, they must be 
used with greater care than in the case of empirically fitted 
interatomic potentials—but there are ways to accommodate 
that, such as uncertainty quantification. We see the future of 
ML-driven materials modeling in two ways: on the one hand, 
in routine applications where the potential may be generated 
“on the fly” or in an otherwise automated fashion, and on the 
other hand, in general-purpose potentials that take longer to 
develop but can then be used off-the-shelf, on their own, for 
a wide range of materials problems. We have presented a few 
applications, and we are excited to see what will follow in the 
years to come.
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